MCP Setup Guide

Set up the Skill Seekers MCP server to use all features through Model Context Protocol with Claude Code and other AI coding agents.


Overview

The Skill Seekers MCP server provides 18 tools accessible through the Model Context Protocol, enabling natural language interaction with all Skill Seekers features.

Supported Features:

  • 18 MCP Tools - Complete Skill Seekers functionality
  • 5 AI Agents - Claude Code, Cursor, Windsurf, VS Code + Cline, IntelliJ IDEA
  • Dual Transport - stdio (default) and HTTP modes
  • Auto-Configuration - One-line setup script
  • Multi-Agent Support - Configure all agents at once

Quick Start

# Clone repository
git clone https://github.com/yusufkaraaslan/Skill_Seekers.git
cd Skill_Seekers

# Run setup script
./setup_mcp.sh

The script automatically:

  1. Checks Python version (3.10+ required)
  2. Installs dependencies
  3. Detects installed AI agents
  4. Configures all detected agents
  5. Starts HTTP server if needed
  6. Validates everything works

Time: 2-3 minutes


Supported Agents

AgentTransportAuto-DetectConfig Path
Claude Codestdio~/Library/Application Support/Claude/mcp.json
CursorHTTP~/Library/Application Support/Cursor/mcp_settings.json
WindsurfHTTP~/Library/Application Support/Windsurf/mcp_config.json
VS Code + Clinestdio~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json
IntelliJ IDEAHTTP~/Library/Application Support/JetBrains/IntelliJIdea2024.3/mcp.xml

Note: Paths shown are for macOS. Linux and Windows paths detected automatically.


Manual Installation

If you prefer manual setup or the script doesn’t work:

Step 1: Install Dependencies

# Create virtual environment (recommended)
python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install Skill Seekers with MCP support
pip install -e ".[mcp]"

# Or install MCP dependencies separately
pip install mcp anthropic-mcp fastmcp

Step 2: Test the Server

# Test stdio mode (default)
python -m skill_seekers.mcp.server_fastmcp

# Should show:
# MCP Server running in stdio mode
# Connected to client...
# (Press Ctrl+C to exit)

# Test HTTP mode
python -m skill_seekers.mcp.server_fastmcp --http --port 3000

# Should show:
# MCP Server running in HTTP mode on http://localhost:3000
# Health check: http://localhost:3000/health
# SSE endpoint: http://localhost:3000/sse

Step 3: Configure Your Agent

For Claude Code (stdio)

Edit ~/Library/Application Support/Claude/mcp.json:

{
  "mcpServers": {
    "skill-seeker": {
      "command": "python",
      "args": ["-m", "skill_seekers.mcp.server_fastmcp"]
    }
  }
}

For Cursor (HTTP)

Edit ~/Library/Application Support/Cursor/mcp_settings.json:

{
  "mcpServers": {
    "skill-seeker": {
      "url": "http://localhost:3000/sse"
    }
  }
}

Note: For HTTP-based agents, start the server first:

# Start in background
python -m skill_seekers.mcp.server_fastmcp --http --port 3000 &

Transport Modes

Stdio Transport (Default)

Best for: Claude Code, VS Code + Cline

Advantages:

  • No network configuration needed
  • More secure (local only)
  • Faster startup (~100ms)
  • Each agent gets isolated process

Configuration:

{
  "mcpServers": {
    "skill-seeker": {
      "command": "python",
      "args": ["-m", "skill_seekers.mcp.server_fastmcp"]
    }
  }
}

HTTP Transport

Best for: Cursor, Windsurf, IntelliJ IDEA

Advantages:

  • Multiple simultaneous connections
  • Web-based clients support
  • Health monitoring endpoint
  • Remote access (use with caution)

Configuration:

{
  "mcpServers": {
    "skill-seeker": {
      "url": "http://localhost:3000/sse"
    }
  }
}

Start HTTP server:

# Foreground
python -m skill_seekers.mcp.server_fastmcp --http --port 3000

# Background (macOS/Linux)
python -m skill_seekers.mcp.server_fastmcp --http --port 3000 &

# With custom port
python -m skill_seekers.mcp.server_fastmcp --http --port 8080

# With debug logging
python -m skill_seekers.mcp.server_fastmcp --http --log-level DEBUG

HTTP Endpoints

When running in HTTP mode:

Health Check:

curl http://localhost:3000/health

Response:

{
  "status": "healthy",
  "server": "skill-seeker-mcp",
  "version": "2.6.0",
  "transport": "http",
  "tools": 18
}

SSE Endpoint:

http://localhost:3000/sse

Available MCP Tools

Config Tools (3)

generate_config - Generate config for any documentation site

result = await mcp.call_tool("generate_config", {
    "name": "myframework",
    "url": "https://docs.myframework.com/",
    "description": "My Framework documentation"
})

list_configs - List all available preset configurations

result = await mcp.call_tool("list_configs", {})

validate_config - Validate config file structure

result = await mcp.call_tool("validate_config", {
    "config_path": "configs/myframework.json"
})

Scraping Tools (4)

estimate_pages - Estimate page count before scraping

result = await mcp.call_tool("estimate_pages", {
    "config_path": "configs/react.json"
})

scrape_docs - Scrape documentation and build skill

result = await mcp.call_tool("scrape_docs", {
    "config_path": "configs/react.json"
})

scrape_github - Scrape GitHub repositories

result = await mcp.call_tool("scrape_github", {
    "repository": "facebook/react",
    "local_repo_path": "/path/to/react"
})

scrape_pdf - Extract content from PDF files

result = await mcp.call_tool("scrape_pdf", {
    "pdf_path": "manual.pdf",
    "name": "mymanual"
})

Packaging Tools (4)

package_skill - Package skill for platform

result = await mcp.call_tool("package_skill", {
    "skill_dir": "output/react/",
    "target": "claude"  # or "gemini", "openai", "markdown"
})

upload_skill - Upload to LLM platform

result = await mcp.call_tool("upload_skill", {
    "skill_zip": "output/react.zip",
    "target": "claude"
})

enhance_skill - AI-enhance SKILL.md

result = await mcp.call_tool("enhance_skill", {
    "skill_dir": "output/react/",
    "mode": "local"  # or "api"
})

install_skill - Complete install workflow

result = await mcp.call_tool("install_skill", {
    "config_path": "configs/react.json",
    "target": "claude",
    "enhance": true
})

Source Tools (5)

fetch_config - Fetch configs from sources

result = await mcp.call_tool("fetch_config", {
    "name": "custom_framework",
    "source": "community"
})

submit_config - Submit new configs

result = await mcp.call_tool("submit_config", {
    "config_path": "configs/myframework.json",
    "description": "My Framework documentation config"
})

add_config_source - Register private git repositories

result = await mcp.call_tool("add_config_source", {
    "name": "company_configs",
    "url": "https://github.com/company/configs.git",
    "type": "git"
})

list_config_sources - List all registered sources

result = await mcp.call_tool("list_config_sources", {})

remove_config_source - Remove registered sources

result = await mcp.call_tool("remove_config_source", {
    "name": "company_configs"
})

Splitting Tools (2)

split_config - Split large documentation configs

result = await mcp.call_tool("split_config", {
    "config_path": "configs/large_docs.json",
    "split_by": "category"
})

generate_router - Generate router/hub skills

result = await mcp.call_tool("generate_router", {
    "sub_skills": ["react_basics", "react_hooks", "react_routing"]
})

Verification

Test in Claude Code

  1. Restart Claude Code after configuration
  2. Type a prompt like:
    "Generate a skill for Vue.js documentation"
  3. Claude should use the MCP tools automatically

Check Tool Availability

In Claude Code, tools appear in the tool use panel when relevant. You can also ask:

"What Skill Seekers tools do you have access to?"

Manual Tool Testing

# Test with MCP inspector (if installed)
npx @modelcontextprotocol/inspector python -m skill_seekers.mcp.server_fastmcp

# Or test directly
python -m skill_seekers.mcp.server_fastmcp
# (Will wait for MCP client connection)

Multi-Agent Configuration

Configure All Agents at Once

The setup script detects all installed agents:

./setup_mcp.sh

Sample output:

🔍 Detecting installed AI agents...

Found the following agents:
✓ Claude Code (stdio)
✓ Cursor (HTTP)
✓ VS Code + Cline (stdio)

Would you like to configure all agents? (Y/n): Y

✅ Configured Claude Code
✅ Configured Cursor
✅ Configured VS Code + Cline
🚀 Starting HTTP server for Cursor...

All agents configured successfully!

Agent-Specific Notes

Claude Code:

  • Restart Claude Code after configuration
  • Tools appear automatically when relevant
  • No HTTP server needed

Cursor:

  • HTTP server must be running
  • Start with: python -m skill_seekers.mcp.server_fastmcp --http --port 3000
  • Restart Cursor after configuration

Windsurf:

  • HTTP server must be running
  • Same port as Cursor (agents can share server)
  • Restart Windsurf after configuration

VS Code + Cline:

  • No HTTP server needed (uses stdio)
  • Restart VS Code after configuration
  • Tools available in Cline extension

IntelliJ IDEA:

  • HTTP server must be running
  • XML configuration format
  • Restart IntelliJ after configuration

Troubleshooting

Tools Not Appearing

Problem: MCP tools don’t show up in Claude Code

Solutions:

# 1. Check config file exists
cat ~/Library/Application\ Support/Claude/mcp.json

# 2. Restart Claude Code completely

# 3. Test server manually
python -m skill_seekers.mcp.server_fastmcp
# Should show "MCP Server running in stdio mode"

# 4. Check Python path
which python3
# Make sure it matches the path in config

HTTP Server Not Starting

Problem: HTTP server fails to start

Solutions:

# Check port not in use
lsof -i :3000

# Use different port
python -m skill_seekers.mcp.server_fastmcp --http --port 8080

# Check firewall settings
# Make sure localhost:3000 is not blocked

Permission Errors

Problem: Can’t write to config file

Solutions:

# Check file permissions
ls -la ~/Library/Application\ Support/Claude/mcp.json

# Create directory if missing
mkdir -p ~/Library/Application\ Support/Claude/

# Create empty config if needed
echo '{"mcpServers":{}}' > ~/Library/Application\ Support/Claude/mcp.json

Import Errors

Problem: ModuleNotFoundError: No module named 'mcp'

Solutions:

# Install MCP dependencies
pip install -e ".[mcp]"

# Or install individually
pip install mcp anthropic-mcp fastmcp

# Verify installation
python -c "import mcp; print(mcp.__version__)"

Agent Not Detected

Problem: Setup script doesn’t detect your agent

Solutions:

# 1. Check agent is installed
# 2. Look for config file manually
# 3. Add config manually (see Manual Installation)
# 4. Report issue with agent details

Advanced Configuration

Custom Port

# Start HTTP server on custom port
python -m skill_seekers.mcp.server_fastmcp --http --port 8080

Update agent configs to use new port:

{
  "mcpServers": {
    "skill-seeker": {
      "url": "http://localhost:8080/sse"
    }
  }
}

Debug Logging

# Enable debug logging
python -m skill_seekers.mcp.server_fastmcp --http --log-level DEBUG

# Logs show:
# - Tool calls
# - Request/response details
# - Error stack traces

Multiple Instances

Run multiple servers on different ports:

# Terminal 1 - Cursor
python -m skill_seekers.mcp.server_fastmcp --http --port 3000

# Terminal 2 - Windsurf
python -m skill_seekers.mcp.server_fastmcp --http --port 3001

Environment Variables

# Set default port
export MCP_HTTP_PORT=3000

# Set log level
export MCP_LOG_LEVEL=DEBUG

# Then start server
python -m skill_seekers.mcp.server_fastmcp --http

Next Steps

Tutorials:

Manual:

CLI Reference: