MCP Setup Guide
Set up the Skill Seekers MCP server to use all features through Model Context Protocol with Claude Code and other AI coding agents.
Overview
The Skill Seekers MCP server provides 18 tools accessible through the Model Context Protocol, enabling natural language interaction with all Skill Seekers features.
Supported Features:
- ✅ 18 MCP Tools - Complete Skill Seekers functionality
- ✅ 5 AI Agents - Claude Code, Cursor, Windsurf, VS Code + Cline, IntelliJ IDEA
- ✅ Dual Transport - stdio (default) and HTTP modes
- ✅ Auto-Configuration - One-line setup script
- ✅ Multi-Agent Support - Configure all agents at once
Quick Start
One-Command Setup (Recommended)
# Clone repository
git clone https://github.com/yusufkaraaslan/Skill_Seekers.git
cd Skill_Seekers
# Run setup script
./setup_mcp.sh
The script automatically:
- Checks Python version (3.10+ required)
- Installs dependencies
- Detects installed AI agents
- Configures all detected agents
- Starts HTTP server if needed
- Validates everything works
Time: 2-3 minutes
Supported Agents
| Agent | Transport | Auto-Detect | Config Path |
|---|---|---|---|
| Claude Code | stdio | ✅ | ~/Library/Application Support/Claude/mcp.json |
| Cursor | HTTP | ✅ | ~/Library/Application Support/Cursor/mcp_settings.json |
| Windsurf | HTTP | ✅ | ~/Library/Application Support/Windsurf/mcp_config.json |
| VS Code + Cline | stdio | ✅ | ~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json |
| IntelliJ IDEA | HTTP | ✅ | ~/Library/Application Support/JetBrains/IntelliJIdea2024.3/mcp.xml |
Note: Paths shown are for macOS. Linux and Windows paths detected automatically.
Manual Installation
If you prefer manual setup or the script doesn’t work:
Step 1: Install Dependencies
# Create virtual environment (recommended)
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install Skill Seekers with MCP support
pip install -e ".[mcp]"
# Or install MCP dependencies separately
pip install mcp anthropic-mcp fastmcp
Step 2: Test the Server
# Test stdio mode (default)
python -m skill_seekers.mcp.server_fastmcp
# Should show:
# MCP Server running in stdio mode
# Connected to client...
# (Press Ctrl+C to exit)
# Test HTTP mode
python -m skill_seekers.mcp.server_fastmcp --http --port 3000
# Should show:
# MCP Server running in HTTP mode on http://localhost:3000
# Health check: http://localhost:3000/health
# SSE endpoint: http://localhost:3000/sse
Step 3: Configure Your Agent
For Claude Code (stdio)
Edit ~/Library/Application Support/Claude/mcp.json:
{
"mcpServers": {
"skill-seeker": {
"command": "python",
"args": ["-m", "skill_seekers.mcp.server_fastmcp"]
}
}
}
For Cursor (HTTP)
Edit ~/Library/Application Support/Cursor/mcp_settings.json:
{
"mcpServers": {
"skill-seeker": {
"url": "http://localhost:3000/sse"
}
}
}
Note: For HTTP-based agents, start the server first:
# Start in background
python -m skill_seekers.mcp.server_fastmcp --http --port 3000 &
Transport Modes
Stdio Transport (Default)
Best for: Claude Code, VS Code + Cline
Advantages:
- No network configuration needed
- More secure (local only)
- Faster startup (~100ms)
- Each agent gets isolated process
Configuration:
{
"mcpServers": {
"skill-seeker": {
"command": "python",
"args": ["-m", "skill_seekers.mcp.server_fastmcp"]
}
}
}
HTTP Transport
Best for: Cursor, Windsurf, IntelliJ IDEA
Advantages:
- Multiple simultaneous connections
- Web-based clients support
- Health monitoring endpoint
- Remote access (use with caution)
Configuration:
{
"mcpServers": {
"skill-seeker": {
"url": "http://localhost:3000/sse"
}
}
}
Start HTTP server:
# Foreground
python -m skill_seekers.mcp.server_fastmcp --http --port 3000
# Background (macOS/Linux)
python -m skill_seekers.mcp.server_fastmcp --http --port 3000 &
# With custom port
python -m skill_seekers.mcp.server_fastmcp --http --port 8080
# With debug logging
python -m skill_seekers.mcp.server_fastmcp --http --log-level DEBUG
HTTP Endpoints
When running in HTTP mode:
Health Check:
curl http://localhost:3000/health
Response:
{
"status": "healthy",
"server": "skill-seeker-mcp",
"version": "2.6.0",
"transport": "http",
"tools": 18
}
SSE Endpoint:
http://localhost:3000/sse
Available MCP Tools
Config Tools (3)
generate_config - Generate config for any documentation site
result = await mcp.call_tool("generate_config", {
"name": "myframework",
"url": "https://docs.myframework.com/",
"description": "My Framework documentation"
})
list_configs - List all available preset configurations
result = await mcp.call_tool("list_configs", {})
validate_config - Validate config file structure
result = await mcp.call_tool("validate_config", {
"config_path": "configs/myframework.json"
})
Scraping Tools (4)
estimate_pages - Estimate page count before scraping
result = await mcp.call_tool("estimate_pages", {
"config_path": "configs/react.json"
})
scrape_docs - Scrape documentation and build skill
result = await mcp.call_tool("scrape_docs", {
"config_path": "configs/react.json"
})
scrape_github - Scrape GitHub repositories
result = await mcp.call_tool("scrape_github", {
"repository": "facebook/react",
"local_repo_path": "/path/to/react"
})
scrape_pdf - Extract content from PDF files
result = await mcp.call_tool("scrape_pdf", {
"pdf_path": "manual.pdf",
"name": "mymanual"
})
Packaging Tools (4)
package_skill - Package skill for platform
result = await mcp.call_tool("package_skill", {
"skill_dir": "output/react/",
"target": "claude" # or "gemini", "openai", "markdown"
})
upload_skill - Upload to LLM platform
result = await mcp.call_tool("upload_skill", {
"skill_zip": "output/react.zip",
"target": "claude"
})
enhance_skill - AI-enhance SKILL.md
result = await mcp.call_tool("enhance_skill", {
"skill_dir": "output/react/",
"mode": "local" # or "api"
})
install_skill - Complete install workflow
result = await mcp.call_tool("install_skill", {
"config_path": "configs/react.json",
"target": "claude",
"enhance": true
})
Source Tools (5)
fetch_config - Fetch configs from sources
result = await mcp.call_tool("fetch_config", {
"name": "custom_framework",
"source": "community"
})
submit_config - Submit new configs
result = await mcp.call_tool("submit_config", {
"config_path": "configs/myframework.json",
"description": "My Framework documentation config"
})
add_config_source - Register private git repositories
result = await mcp.call_tool("add_config_source", {
"name": "company_configs",
"url": "https://github.com/company/configs.git",
"type": "git"
})
list_config_sources - List all registered sources
result = await mcp.call_tool("list_config_sources", {})
remove_config_source - Remove registered sources
result = await mcp.call_tool("remove_config_source", {
"name": "company_configs"
})
Splitting Tools (2)
split_config - Split large documentation configs
result = await mcp.call_tool("split_config", {
"config_path": "configs/large_docs.json",
"split_by": "category"
})
generate_router - Generate router/hub skills
result = await mcp.call_tool("generate_router", {
"sub_skills": ["react_basics", "react_hooks", "react_routing"]
})
Verification
Test in Claude Code
- Restart Claude Code after configuration
- Type a prompt like:
"Generate a skill for Vue.js documentation" - Claude should use the MCP tools automatically
Check Tool Availability
In Claude Code, tools appear in the tool use panel when relevant. You can also ask:
"What Skill Seekers tools do you have access to?"
Manual Tool Testing
# Test with MCP inspector (if installed)
npx @modelcontextprotocol/inspector python -m skill_seekers.mcp.server_fastmcp
# Or test directly
python -m skill_seekers.mcp.server_fastmcp
# (Will wait for MCP client connection)
Multi-Agent Configuration
Configure All Agents at Once
The setup script detects all installed agents:
./setup_mcp.sh
Sample output:
🔍 Detecting installed AI agents...
Found the following agents:
✓ Claude Code (stdio)
✓ Cursor (HTTP)
✓ VS Code + Cline (stdio)
Would you like to configure all agents? (Y/n): Y
✅ Configured Claude Code
✅ Configured Cursor
✅ Configured VS Code + Cline
🚀 Starting HTTP server for Cursor...
All agents configured successfully!
Agent-Specific Notes
Claude Code:
- Restart Claude Code after configuration
- Tools appear automatically when relevant
- No HTTP server needed
Cursor:
- HTTP server must be running
- Start with:
python -m skill_seekers.mcp.server_fastmcp --http --port 3000 - Restart Cursor after configuration
Windsurf:
- HTTP server must be running
- Same port as Cursor (agents can share server)
- Restart Windsurf after configuration
VS Code + Cline:
- No HTTP server needed (uses stdio)
- Restart VS Code after configuration
- Tools available in Cline extension
IntelliJ IDEA:
- HTTP server must be running
- XML configuration format
- Restart IntelliJ after configuration
Troubleshooting
Tools Not Appearing
Problem: MCP tools don’t show up in Claude Code
Solutions:
# 1. Check config file exists
cat ~/Library/Application\ Support/Claude/mcp.json
# 2. Restart Claude Code completely
# 3. Test server manually
python -m skill_seekers.mcp.server_fastmcp
# Should show "MCP Server running in stdio mode"
# 4. Check Python path
which python3
# Make sure it matches the path in config
HTTP Server Not Starting
Problem: HTTP server fails to start
Solutions:
# Check port not in use
lsof -i :3000
# Use different port
python -m skill_seekers.mcp.server_fastmcp --http --port 8080
# Check firewall settings
# Make sure localhost:3000 is not blocked
Permission Errors
Problem: Can’t write to config file
Solutions:
# Check file permissions
ls -la ~/Library/Application\ Support/Claude/mcp.json
# Create directory if missing
mkdir -p ~/Library/Application\ Support/Claude/
# Create empty config if needed
echo '{"mcpServers":{}}' > ~/Library/Application\ Support/Claude/mcp.json
Import Errors
Problem: ModuleNotFoundError: No module named 'mcp'
Solutions:
# Install MCP dependencies
pip install -e ".[mcp]"
# Or install individually
pip install mcp anthropic-mcp fastmcp
# Verify installation
python -c "import mcp; print(mcp.__version__)"
Agent Not Detected
Problem: Setup script doesn’t detect your agent
Solutions:
# 1. Check agent is installed
# 2. Look for config file manually
# 3. Add config manually (see Manual Installation)
# 4. Report issue with agent details
Advanced Configuration
Custom Port
# Start HTTP server on custom port
python -m skill_seekers.mcp.server_fastmcp --http --port 8080
Update agent configs to use new port:
{
"mcpServers": {
"skill-seeker": {
"url": "http://localhost:8080/sse"
}
}
}
Debug Logging
# Enable debug logging
python -m skill_seekers.mcp.server_fastmcp --http --log-level DEBUG
# Logs show:
# - Tool calls
# - Request/response details
# - Error stack traces
Multiple Instances
Run multiple servers on different ports:
# Terminal 1 - Cursor
python -m skill_seekers.mcp.server_fastmcp --http --port 3000
# Terminal 2 - Windsurf
python -m skill_seekers.mcp.server_fastmcp --http --port 3001
Environment Variables
# Set default port
export MCP_HTTP_PORT=3000
# Set log level
export MCP_LOG_LEVEL=DEBUG
# Then start server
python -m skill_seekers.mcp.server_fastmcp --http
Next Steps
Tutorials:
- Scraping Documentation - Use MCP tools to scrape docs
- Creating Configs - Generate configs with MCP
Manual:
- MCP Tools Reference - Complete tool documentation
- Multi-Platform Support - Platform-specific features
CLI Reference:
- scrape command - CLI equivalent of MCP tools
- package command - Packaging options